Sakaki, T., Inoue, M., Senda, S. \& Tomita, K. (1978). Biochem. Biophys. Res. Commun. 83, 21-26.
Sarma, R. H., Ross, V. \& Kaplan, N. O. (1968). Biochemistry, pp. 3052-3062.
Sundaralingam, M. (1969). Biopolymers, 7, 821-860.
TAylor, R. \& Kennard, O. (1982a). J. Mol. Struct. 78, 1-28.

Taylor, R. \& Kennard, O. (1982b). J. Am. Chem. Soc. 104, 5063-5070.
Voet, D. (1973). J. Am. Chem. Soc. 95, 3763-3770.
Voet, D. \& Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183-265.
Yao Jia-XING (1981). Acta Cryst. A37, 642-644.

Acta Cryst. (1988). C44, 2144-2146

Structure of $\boldsymbol{N}^{1}, \boldsymbol{N}^{2}$-Di(\boldsymbol{p}-tolyl)acetamidine

By E. Ciszak, M. Gdaniec, M. Jaskólski and Z. Kosturkiewicz*
Department of Crystallography, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

(Received 28 March 1988; accepted 14 July 1988)

Abstract

C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2}, M_{r}=238.3\), orthorhombic, $P b c a$, $a=24.558$ (4), $b=12.534$ (3), $c=9.211$ (1) $\AA, V=$ 2835.2 (9) $\AA^{3}, Z=8, D_{m}=1 \cdot 10, D_{x}=1 \cdot 12 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54178 \AA, \quad \mu=0.440 \mathrm{~mm}^{-1}, \quad F(000)=$ 1024, room temperature, $R=0.056$ for 1364 observed reflexions. The $\mathrm{N}^{1}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}^{2}$ bonds are different [1.368 (4) and 1.283 (4) \AA, respectively]. The N^{1} atom and the p-tolyl substituent at the $\mathrm{C}=\mathrm{N}^{2}$ double bond are in a trans (E) configuration. The phenyl rings at N^{1} and N^{2} are twisted relative to the central amidine plane by 39.4 (4) and 88.1 (4) ${ }^{\circ}$, respectively. An intermolecular $\mathrm{N}^{1}-\mathrm{H} \cdots \mathrm{N}^{2}$ hydrogen bond joins the molecules into chains parallel to \mathbf{c}.

Introduction. This work is part of a series of investigations carried out in this laboratory \dagger to determine the changes induced in the geometry of the amidine core by its intra- and intermolecular environment. As the molecule belongs to the group of symmetrically substituted amidines with secondary amine nitrogen, which have two identical tautomeric forms, we expected the $\mathrm{C}-\mathrm{N}$ bonds to be of equal length due to tautomerism and/or H -bond formation.

Experimental. The title compound was synthesized by Oszczapowicz, Orliński \& Hejchman (1979). Plateshaped crystals obtained from absolute ethanol; D_{m} by flotation; space group from Weissenberg photographs; crystal $0.15 \times 0.20 \times 0.45 \mathrm{~mm}$; Syntex $P 2_{1}$ diffractometer; cell parameters from least-squares treatment of setting angles of 15 reflexions with $16 \leq 2 \theta \leq 22^{\circ}$. No absorption correction. 1881 reflexions with $2 \theta \leq$ 115° measured in the range $h: 0 \rightarrow+26, k: 0 \rightarrow+12$, $l: 0 \rightarrow+10$; no significant intensity variation ($\pm 3.4 \%$) for

[^0]0108-2701/88/122144-03\$03.00
two standard reflexions ($112,4 \overline{1} 0$) recorded every hour. Peak-profile analysis according to Lehmann \& Larsen (1974); 1364 observed reflexions with $I \geq 2 \sigma(I)$. Structure solved by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Phenyl H atoms and amine H atom from $\Delta \rho$ map, remaining H atoms calculated from methyl-group geometry and optimized with fixed $U_{\text {iso }}$ $\left(0.08 \AA^{2}\right)$. Full-matrix least-squares refinement [function minimized: $\left.\sum w\left(F_{o}-F_{c}\right)^{2}\right]$ of anisotropic non- H atoms and isotropic H atoms found in $\Delta \rho$ map. F_{c} values multiplied by $\left(1-x F_{c}^{2} / \sin 2 \theta\right)$ where x is the empirical isotropic extinction parameter refined to 29 (9) $\times 10^{-7} . R=0.056, w R=0.079, S=3 \cdot 14, w$ $=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0003 F_{o}^{2}\right], \quad(\Delta / \sigma)_{\max }=0 \cdot 1, \quad(\Delta \rho)_{\max }=$ $0.19,(\Delta \rho)_{\min }=-0.28$ e \AA^{-3}. Computer programs: MULTAN80 (Main et al., 1980), SHELX 76 (Sheldrick, 1976) and local programs (Jaskólski, 1982a). Molecular illustrations drawn using PLUTO (Motherwell \& Clegg, 1978) and ORTEP (Johnson, 1976). Atomic scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Atomic parameters are given in Table 1, bond lengths and angles in Table $2 . \dagger$

An ORTEP stereodrawing showing the atom labelling system is presented in Fig. 1. The $\mathrm{N}(1)-\mathrm{C}(1)$ and $\mathrm{C}(1)-\mathrm{N}(2)$ bond lengths are significantly different. From a semiempirical correlation ($r=r_{0}-0 \cdot 18 p$) between π-bond orders (p) and bond distances (r) where r_{0} is a standard single-bond distance ($1.458 \AA$ for $\mathrm{C}-\mathrm{N}$

[^1]© 1988 International Union of Crystallography

Table 1. Final fractional coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{k} U_{i k} a_{i}^{*} a_{k}^{*}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{k}\right)$				
	x	y	z	$U_{\text {eq }}$
C(1)	$0.4013(1)$	$0.1782(3)$	$0.0682(3)$	$0.053(1)$
C(2)	$0.4104(2)$	$0.0389(3)$	$0.2349(3)$	$0.054(1)$
C(3)	$0.4597(2)$	$0.0118(3)$	$0.2965(4)$	$0.065(1)$
C(4)	$0.4689(2)$	$-0.0924(3)$	$0.3459(4)$	$0.069(2)$
C(5)	$0.4296(2)$	$-0.1696(3)$	$0.3370(4)$	$0.064(1)$
C(6)	$0.3806(2)$	$-0.1419(3)$	$0.2737(5)$	$0.072(2)$
C(7)	$0.3709(2)$	$-0.0398(3)$	$0.2233(4)$	$0.066(1)$
C(8)	$0.3541(1)$	$0.3513(2)$	$0.1151(3)$	$0.051(1)$
C(9)	$0.3630(2)$	$0.4594(3)$	$0.0969(4)$	$0.057(1)$
C(10)	$0.3339(2)$	$0.5334(3)$	$0.1783(4)$	$0.061(1)$
C(11)	$0.2962(1)$	$0.5022(3)$	$0.2826(4)$	$0.063(1)$
C(12)	$0.2872(2)$	$0.3938(3)$	$0.2958(5)$	$0.072(2)$
C(13)	$0.3150(2)$	$0.3186(3)$	$0.2143(4)$	$0.066(1)$
C(14)	$0.4391(2)$	$-0.2804(3)$	$0.3962(6)$	$0.098(2)$
C(15)	$0.2671(2)$	$0.5829(3)$	$0.3755(5)$	$0.085(2)$
C(16)	$0.4258(1)$	$0.1142(3)$	$-0.0522(3)$	$0.060(1)$
N(1)	$0.3837(1)$	$0.2778(2)$	$0.0293(3)$	$0.058(1)$
N(2)	$0.3973(1)$	$0.1461(2)$	$0.2001(3)$	$0.060(1)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{N}(1)$	1.368 (4)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.3$	1.382 (5)
$\mathrm{C}(1)-\mathrm{N}(2)$	1.283 (4)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.3$	1.391 (5)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.419 (4)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$.	1.390 (5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.380 (6)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.38$	1.382 (6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.401 (6)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.35$	1.385 (6)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.370 (6)	$\mathrm{C}(13)-\mathrm{C}(8) \quad 1.35$	1.387 (5)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.381 (6)	$\mathrm{C}(5)-\mathrm{C}(14) \quad 1$.	1.510 (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.382 (5)	$\mathrm{C}(11)-\mathrm{C}(15) \quad 1$.	1.506 (6)
C (7)-C(2)	1.387 (6)	$\mathrm{C}(1)-\mathrm{C}(16) \quad 1.4$	1.496 (5)
$\mathrm{N}(1)-\mathrm{C}(8)$	1.416 (4)	$\mathrm{N}(1)-\mathrm{H}(1) \quad 0.8$	0.82 (4)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	120.7 (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	116.4 (3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(16)$	114.9 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.8 (3)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(16)$	124.4 (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	119.9 (3)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	119.6 (3)	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	118.6 (3)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	121.7 (3)	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)$	122.1 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.3 (3)	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{N}(2)$	119.9 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.7 (3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	118.0 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	117.5 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(14)$	121.3 (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.7 (3)	C(6)-C(5)-C(14)	121.2 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	120.8 (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$	121.3 (3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	127.6 (3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$	122.3 (3)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	119.3 (3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	114 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.5 (3)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{H}(1)$	118 (3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.8 (3)		

Fig. 1. View of the molecule with atom numbering.
bonds) (Norrestam, Mertz \& Crossland, 1983), the following π-bond orders are obtained in the present structure: 0.5 for $\mathrm{C}(1)-\mathrm{N}(1)$ and 1.0 for $\mathrm{C}(1)-\mathrm{N}(2)$. The former bond is, therefore, intermediate between a single and a double bond, while the latter is a typical double bond. In a similar compound, N^{1}, N^{2}-diphenylformamidine (Anulewicz, Krygowski \& Pniewska, 1987), the difference between $\mathrm{C}-\mathrm{N}^{1}$ and $\mathrm{C}-\mathrm{N}^{2}(4)$ is very small $[\Delta=0.009$ (4) \AA for molecule A and 0.012 (4) \AA for molecule B]. In another formamidine with different substituents at N^{1} and N^{2} [N^{1}, N^{1}-hexa-methylene- $N^{2}-p$-nitrophenylformamidine (Krajewski et al., 1981)], this difference is 0.032 (9) \AA, and in N^{1}, N^{1} dimethyl $-N^{2}-p$-nitrophenylformamidine (Ciszak et al., 1989), $\Delta=0.043$ (6) and 0.042 (6) \AA for the two independent molecules. In acet-, benz- and pivalamidines investigated in this laboratory (Surma, Jaskólski, Kosturkiewicz \& Oszczapowicz, 1988; Ciszak et al., 1989), 4 varies from 0.052 (8) \AA in $\quad N^{1}, N^{1}$-dimethyl- N^{2} - p-nitrophenylacetamidine to $0.087(4) \AA$ in N^{1}, N^{1}-dimethyl- N^{2} - p-nitrophenyl-2,2-dimethylpropionamidine. In the present structure Δ is 0.085 (6) \AA although N^{1} and N^{2} have identical substituents. In conclusion we can say that it is the presence of an H atom at $\mathrm{C}(1)$ that permits an equalization of $\mathrm{N}^{1}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}^{2}$ while symmetrical substitution at N^{1} and N^{2} and the presence of an H atom at N^{1} seem to play a minor role.

The value of the $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$ angle, 120.7 (3) ${ }^{\circ}$, is larger than in many other trans-amidine derivatives substituted at the $\mathrm{C}_{\text {amidine }}$ atom. Intermolecular forces seem to be the reason for this widening of angle.

As a result of molecular overcrowding, the N^{1} - and N^{2} - p-tolyl rings are twisted relative to the central amidine plane by 39.4 (4) and 88.1 (4) ${ }^{\circ}$, respectively.
N^{1} and the p-tolyl group at N^{2} are in a trans (E) configuration relative to the $\mathrm{C}(1)=\mathrm{N}(2)$ double bond. Owing to the partial double-bond character of $\mathrm{N}(1)-$ $C(1)$, rotation about this bond is hindered and two isomeric forms can exist. N^{2} and the p-tolyl group at $\mathrm{N}(1)$ are in a syn (Z) configuration relative to the $\mathrm{C}(1)-\mathrm{N}(1)$ bond. This configuration is different from

Fig. 2. A stereoview packing diagram.
that found in N^{1}, N^{2}-diphenylformamidine (Anulewicz et al., 1987), where a different H -bond pattern was also found. The molecules of this formamidine form H bonded dimers; such a dimerization is possible owing to the location of the lone pair at N^{2} and the $\mathrm{N}^{1}-\mathrm{H}$ donor on the same side of the molecule. In the present $\mathrm{di}\left(p\right.$-tolyl)acetamidine the lone pair at N^{2} and the $\mathrm{N}^{1}-\mathrm{H}$ are situated on opposite sides of the molecule, leading to a different pattern of H bonds in the crystal. The molecular packing is shown in Fig. 2. An intermolecular hydrogen bond between the molecules related by a glide plane $\left[\mathrm{N}(1) \cdots \mathrm{N}\left(2^{\prime}\right) 3.196\right.$ (4), $\mathrm{H}(1) \cdots \mathrm{N}\left(2^{1}\right)$ $2.38(4) \AA, \mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{N}\left(2^{\mathrm{i}}\right) 170(2)^{\circ}$; (i) $x, 0.5-y$, $-0.5+z]$ joins the molecules into infinite chains parallel to c. According to its $\Delta \mathrm{H} A$ parameters (Jaskólski, 1982b), this hydrogen bond can be considered as medium weak ($4 \mathrm{H} A=12.5$).

According to Sohàr (1967), solid N, N^{\prime}-diphenylacetamidine shows an IR spectrum indicating the formation of a cyclic dimeric structure. The X-ray analysis of di-p-tolylacetamidine shows a different H -bond pattern and does not confirm the rule drawn from inspection of the IR spectrum.

As can be seen in Fig. 2, the E, Z configuration of the molecules makes possible the formation of infinite chains joined by hydrogen bonds.

The authors are indebted to Doc. Dr J. Oszczapowicz, Warsaw University, for providing a sample of the compound. This work was supported by Project RP.II.10.6.1.5.(MNE).

References

Anulewicz, R., Krygowski, T. M. \& Pniewska, B. (1987). J. Crystallogr. Spectrosc. Res. 17, 661-670.
Ciszak, E., Gdaniec, M., Jaskólski, M., Kosturkiewicz, Z., Owsiański, J. \& TyKarska, E. (1989). Acta Cryst. In the press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
JASKólski, M. (1982a). Fourth Symposium on Organic Crystal Chemistry, Poznań, Poland, September 1982, edited by Z. Kaluski, pp. 70-71. Adam Mickiewicz Univ., Poznań, Poland.
Jaskólski, M. (1982b). Fourth Symposium on Organic Crystal Chemistry, Poznań, Poland, September 1982, edited by Z. Kaluski, pp. 221-245. A. Mickiewicz Univ., Poznań, Poland.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Krajewski, J., Urbańczyk-Lipkowska, Z., Gluziński, P., Buśko-Oszczapowicz, J., Oszczapowicz, J., Bleidelis, J. \& Kemme, A. (1981). Pol. J. Chem. 55, 1015-1024.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Norrestam, R., Mertz, S. \& Crossland, I. (1983). Acta Cryst. C39, 1554-1556.
Oszczapowicz, J.; Orliński, R. \& Hejchman, E. (1979). Pol. J. Chem. 53, 1259-1265.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sohàr, P. (1967). Acta Chim. Acad. Sci. Hung. 54, 91-97.
Surma, K., Jaskólski, M., Kosturkiewicz, Z. \& Oszczapowicz, J. (1988). Acta Cryst. C44, 1031-1033.

Acta Cryst. (1988). C44, 2146-2149

Structure of rel-(1S,2S,3S,6S,7R)-6-Acetoxy-5-bromo-1,2-dimethoxycarbonyl-3,7-dimethylcyclohept-4-ene

By André G. Michel* and Nadine Michel-Dewez

Laboratoire de chimie structurale, Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
and Alexandre Favre
Laboratoire de chimie organique, Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
(Received 26 May 1988; accepted 8 July 1988)

0108-2701/88/122146-04\$03.00
hept-4-ene-1,2-dicarboxylate, $\quad \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrO}_{6}, \quad M_{r}=$ 377.24, monoclinic, $\quad P 2 / n, \quad a=26.004(2), \quad b=$ 7.746 (1), $\quad c=8.540$ (3) A $, \quad \beta=98.90(1)^{\circ}, \quad V=$ $1699.5 \AA^{3}, \quad Z=4, \quad D_{x}=1.474 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=$
(C) 1988 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.
 \dagger Previous paper: Ciszak, Gdaniec, Jaskólski, Kosturkiewicz, Owsiański \& Tykarska (1989).

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51248 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

